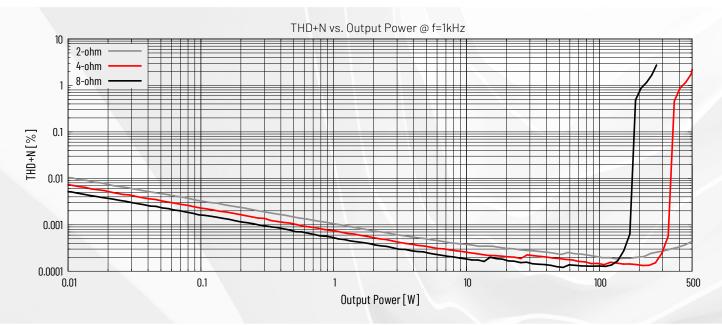


1ET400A

PURE SOUND

Designed for ultra-high performance, the utmost in robustness and integration ease



TECHNICAL SPECIFICATIONS

- Single-channel, analog-input Class D amplifier module
- Negligible THD and IMD
- Extraordinary low noise
- Output
 Description
 Description
 © Load-invariant response
- Exceptionally clean clipping
- Output
 Description
 Output
 Description
 D

Output Power	>400W @ 1% THD, 4Ω	
Output Current	~25A	
THD+N	<0.00017% (-116dB) @ 100W, 4Ω, 20-20kHz	
Dynamic Range	~131dB(A)	
Output Noise	~11.5µV(A)	
Gain	12.8dB	
Output Impedance	<50μΩ @ 1kHz	
Efficiency	>94%	
Idle losses (output stage)	~1.7W	
Supply	±25V to ±65V DC	
Size	82x63x35mm	

Product Brief

1ET400A is a single-channel, ultra-high performance, analog-input Class D Amplifier module capable of over 400W of power at an audio quality level that sets the standard for power amplifiers of any operating class. Its compact size and high reliability makes it fit a broad range of applications, while its audio quality makes it the undisputable choice even in applications where all the premium is on sound quality.

PURIFI's continuing research into nonlinear control theory has produced the first mathematically exact largesignal model of self-oscillating amplifier controllers. This breakthrough allows complete optimization of the feedback circuit and improves performance by at least an order of magnitude over existing implementations. The amplifier module further incorporates a comprehensive protection system that makes it tremendously robust and easy to integrate.

These circuits and methods provide many practical and audible benefits:

High loop gain (>75dB) in the entire audio band

o This figure corresponds to an unprecedented 110MHz Gain-Bandwidth Product and produces consistent ultra-high performance across the audio spectrum unmatched by audio amplifiers of any technology or operating class.

Negligible Intermodulation Distortion (IMD)

o A very good measure for how well an amplifier handles complex signals. Sonically low IMD means a highly resolved and stable stereo image across the whole spectrum, even during very complex and busy passages.

THD remains extremely low at any frequency and any power level right until clipping

o Translates into a total lack of sonic signature, and an ability to reproduce any type of music without preference for genres or production style.

Negligible output noise

o No audible noise. Deep black silences and a generous and detailed sound even at very low playback volumes.

High power supply rejection ratio (PSRR)

o The module places no particular demands on the power supply quality. A simple off-the-shelf unregulated SMPS will not degrade audio performance.

Load-invariant frequency response and negligible output impedance

The amplifier handles difficult loudspeakers with ease, including those that challenge most other amplifiers.

Controlled, second-order low-pass response

- o Very flat audio-band response with a sensible, 60kHz bandwidth.
- Reduced sensitivity to out-of-band noise from DACs, reducing the requirements on the DAC reconstruction filter. This leaves a shorter signal path between DAC and loudspeaker.
- Problem-free operation with outboard DACs over which you may have no control.

Very low idle losses and reduced electromagnetic interference (EMI)

- The enormous loop gain allows relaxed timing of the power MOSFETs without degrading audio performance.
- o Idle losses are minimized.
- o Very little to no effort needed to pass regulatory tests.

Exceptionally clean clipping and clipping-recovery in both voltage and current domains

- Clips cleanly and recovers immediately without "overhang". Current limiting is equally instantaneous and glitch free. This quarantees the smallest amount of audible artefacts when pushed into clipping or overload protection.
- Overall implementation/integration ease saves save time and cost for the system integrator
 - o Architecture completely eliminates heterodyning in multichannel applications.

1 Specifications (selected items)

1.1 Recommended Operating Conditions

Referenced to GND unless otherwise noted.

Parameter		Тур	Unit		
Power Sup	Power Supplies				
±VP	Power Stage, positive rail voltage	±65	V		
VDR	Gate Drive, voltage (must be referenced to -VP)	12	V		
±VOP	OPAMPs, positive rail voltage	±12	V		
VD	Digital, voltage	3.3	V		
I/0's		. 40			
R_L	Speaker Load, resistive	2¹)_∞	Ω		

¹⁾ The amplifier is stable into loads $<2\Omega$. Output power may be limited by the Over Current Protection system.

Table 1 Recommended Operating Conditions

1.2 Audio Characteristics

 $R_L=4\Omega$, $T_A=25^\circ$ free operating air, f=1kHz. Refer to Datasheet for detailed operating conditions.

	Parameter	Conditions	Тур	Unit
P ₀	Output Power, Peak	R _L = 8Ω, 1%THD	215	W
		R _L = 4Ω, 1%THD	425	W
		R _L = 2Ω, 1%THD	560 ¹⁾	W
	Output Power, Continuous	-	(as limited by thermal system)	-
		P ₀ =1W, f=1kHz	0.0007	%
	Total Harmonic Distortion + Noise	P ₀ =10W, f=1kHz	0.00026	%
TD. N.		P ₀ =100W, f=1kHz	0.000152)	%
THD+N		P ₀ =1W, f=20-20kHz	0.0007	%
		P ₀ =10W, f=20-20kHz	0.00029	%
		P ₀ =100W, f=20-20kHz	0.000172)	%
		P ₀ =1W, f=18kHz+19kHz	0.00025	%
	Intermodulation Distortion, CCIF	P ₀ =10W, f=18kHz+19kHz	0.00022	%
1145		P ₀ =100W, f=18kHz+19kHz	0.00027	%
IMD		P ₀ =1W, DIM30	0.002 ²⁾	%
	Dynamic Intermodulation Distortion, DIM	P ₀ =10W, DIM30	0.002 ²⁾	%
		P ₀ =100W, DIM30	0.002 ²⁾	%
ICN	Idle Noise, speaker output	A-weighted	11.5	μV
DNR	Dynamic Range	A-weighted, relative to peak P_0 , $R_L = 4\Omega$	131	dB
SNR	Signal to Noise Ration	A-weighted, relative to peak P_0 , $R_L = 4\Omega$	131	dB
		R _L = 8Ω, V _o =2.83V@1kHz(=1W)	60/75	kHz
	Frequency Response, upper -3dB/-6dB	$R_L = 4\Omega$, $V_o = 2.83V@1kHz$	60/75	kHz
		R _L = 2Ω, V₀=2.83V@1kHz	60/75	kHz
	Frequency Response, lower -3dB	-	(DC coupled)	-
BW	Frequency Response, flatness	$R_L = 8\Omega$, $f = 20-20$ kHz	±0.01	dB
		$R_L=4\Omega$, $f=20-20$ kHz	±0.01	dB
		$R_L = 2\Omega$, $f = 20-20$ kHz	±0.01	dB
		$R_L = \infty \Omega$, $f = 20-20$ kHz	±0.01	dB
	Frequency Response, load variation	R _L = 2 -∞Ω, f= 20-20kHz	±0.01	dB
Zo	Output Impedance ³⁾	1kHz, I _{out} =1A	0.05	mΩ
		20-20kHz, l _{out} =1A	< 0.5	mΩ

¹⁾ Power is limited by overcurrent protection system (OCP)

Table 2 Audio Characteristics

²⁾ THD @ 100W and DIM readings limited by analyzer

²⁾ Kelvin measurement on the output connector

1.3 Typical Audio Performance, Graphs

Refer to Datasheet for detailed operating conditions.

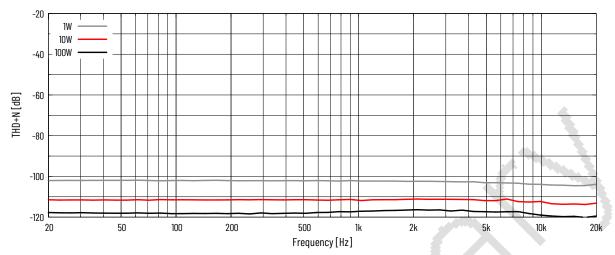


Figure 1 THD [dB] vs. Frequency @ 4Ω

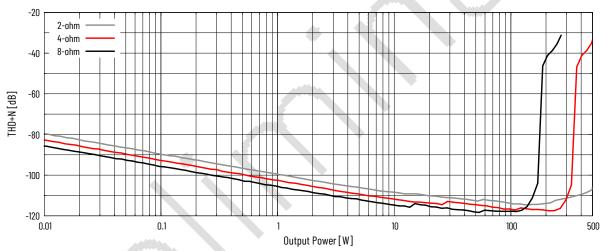


Figure 2 THD+N[dB] vs. Power @ f=1kHz

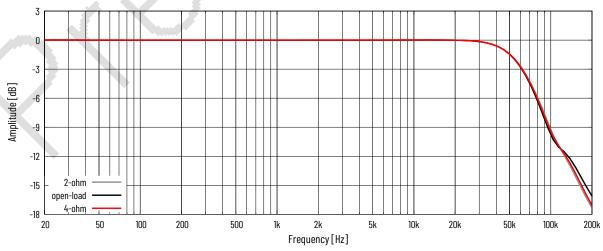


Figure 3 Frequency Response @ V₁=2.83V

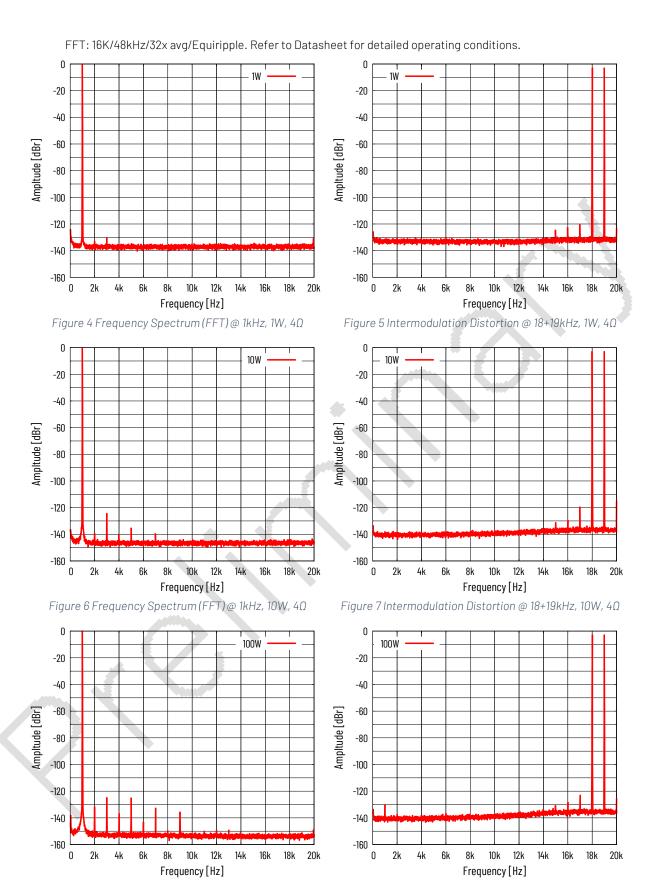


Figure 8 Frequency Spectrum (FFT) @ 1kHz, 100W, 4Ω

Figure 9 Intermodulation Distortion @ 18+19kHz, 100W, 4Ω

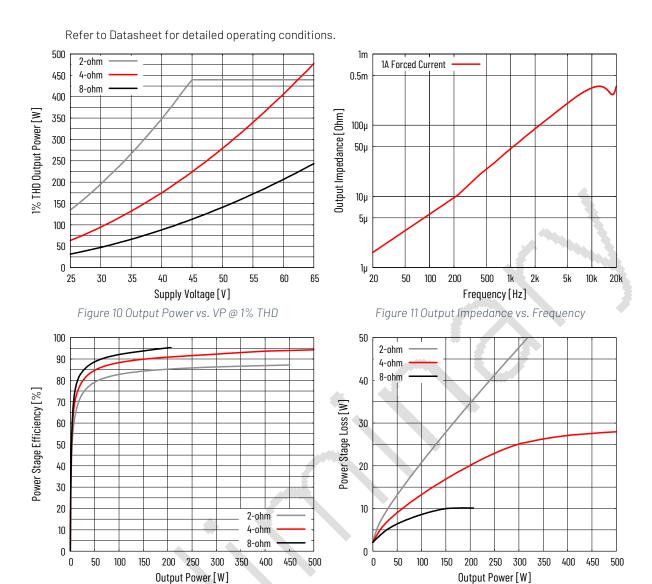


Figure 12 Power Stage Efficiency vs. Output Power

Figure 13 Power Stage Loss vs. Output Power (one channel)

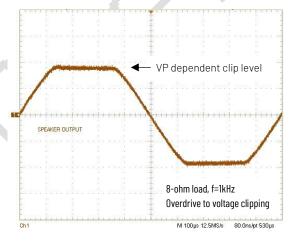


Figure 14 Voltage Clipping/Recovery (behavior)

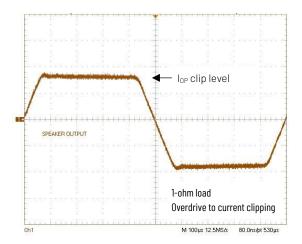


Figure 15 Current Clipping/Recovery (behavior)

1.4 Electrical Characteristics

Refer to Datasheet for detailed operating conditions.

	Parameter	Conditions	Min Typ Max	Unit
Current Co	onsumption & Efficiency	·		•
Ivp	Power Stage supply, current	(+VP,-VP), Idle	13	mΑ
I _{DR}	Gate Drive supply, current	(VDR), Normal operation	35	mΑ
lop	OPAMPs supply, current	(+VOP, -VOP), Normal operation	27	mΑ
Ivo	uC and logic supply, current	(VD), Normal operation	10	mΑ
	Efficiency	$R_L = 8\Omega$	95	%
η		$R_L = 4\Omega$, Full nominal power	94	%
Audio Inpu	its & Output	·		
Б	I	Differential, pos. to neg. input	4.4	kΩ
R _{in}	Input impedance	Single-ended, inverting input driven	2.2	kΩ
GAIN	Voltage Gain	V _o /V _i	12.8	dB
V _{in_1%THD}	Differential input voltage	To get 1%THD @ R_L = 4Ω , VP =± $65V$ 1)	9.6	Vrms
CMRR	Common Mode Rejection Ratio	Audio input, 1kHz	>60	dB
PSRR	Power Supply Rejection Ratio	Forced 1Vrms f≤1kHz ripple, either rail	>90	dB
V _{o_DC}	Speaker Output, DC offset	Analog inputs shorted	<10	mV
		Idle (indicative)	500	kHz
fs	Switching frequency	Positive clipping	>50	kHz
		Negative clipping	0	Hz
Protection	n Systems	*		
I _{OCP}	Overcurrent Protection, threshold	Current limit	25	А
fDCP	DC Protection, Speaker terminal	Frequency threshold	2.5	Hz
VDCP		Voltage limit, low-pass filtered signal	12	V
T_{OTP}	Thermal Protection, Heatsink	over-temperature	75	°C
T _{UTP}	Therman Totection, Heatsink	under-temperature	0	°C
OVP _{VP}	<u> </u>	(+VP, -VP)	75	V
OVPDR	Overvoltage Protection, threshold	(VDR)	15.5	V
OVPop		(+V0P, -V0P)		V
UVP _{VP}	Undervoltage Protection, threshold	(+VP, -VP)		V
UVPDR		(VDR)	9.5	V
UVP _{OP}		(+V0P, -V0P)	11	V

¹⁾ Equivalent of nominal output power (P_0) into 4Ω , see Table 2

Table 3 Electrical Characteristics

2 Mechanical Specifications

2.1 Dimensions

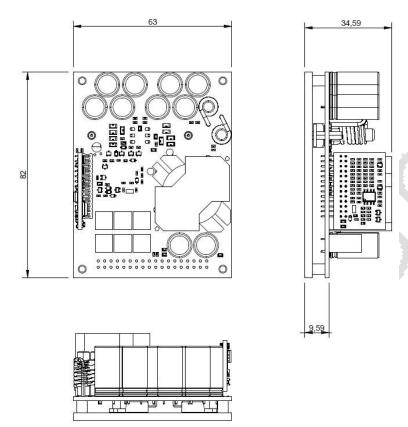


Figure 16 Dimensions

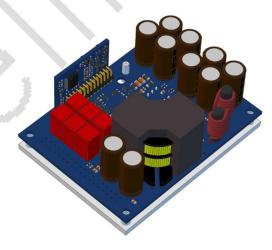


Figure 17 3D Model view

Accuracy of Information: To the extent PURIFI ApS provides information on function and specifications, PURIFI ApS attempts to be as accurate as possible. However, PURIFI ApS does not warrant the accuracy of information on its websites and other documents as accurate, complete, reliable, current, or error-free. Please refer to Data Sheet for detailed specification. All data and information in the Product Brief subject to change.